Chemical Swarming: Depending on Concentration, an Amphiphilic Ruthenium Polypyridyl Complex Induces Cell Death via Two Different Mechanisms

نویسندگان

  • Bianka Siewert
  • Vincent H S van Rixel
  • Eva J van Rooden
  • Samantha L Hopkins
  • Miriam J B Moester
  • Freek Ariese
  • Maxime A Siegler
  • Sylvestre Bonnet
چکیده

The crystal structure and in vitro cytotoxicity of the amphiphilic ruthenium complex [3](PF6 )2 are reported. Complex [3](PF6 )2 contains a Ru-S bond that is stable in the dark in cell-growing medium, but is photosensitive. Upon blue-light irradiation, complex [3](PF6 )2 releases the cholesterol-thioether ligand 2 and an aqua ruthenium complex [1](PF6 )2 . Although ligand 2 and complex [1](PF6 )2 are by themselves not cytotoxic, complex [3](PF6 )2 was unexpectedly found to be as cytotoxic as cisplatin in the dark, that is, with micromolar effective concentrations (EC50 ), against six human cancer cell lines (A375, A431, A549, MCF-7, MDA-MB-231, and U87MG). Blue-light irradiation (λ=450 nm, 6.3 J cm(-2) ) had little influence on the cytotoxicity of [3](PF6 )2 after 6 h of incubation time, but it increased the cytotoxicity of the complex by a factor 2 after longer (24 h) incubation. Exploring the unexpected biological activity of [3](PF6 )2 in the dark elucidated an as-yet unknown bifaceted mode of action that depended on concentration, and thus, on the aggregation state of the compound. At low concentration, it acts as a monomer, inserts into the membrane, and can deliver [1](2+) inside the cell upon blue-light activation. At higher concentrations (>3-5 μm), complex [3](PF6 )2 forms supramolecular aggregates that induce non-apoptotic cell death by permeabilizing cell membranes and extracting lipids and membrane proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A surface-attached Ru complex operating as a rapid bistable molecular switch.

An electrochemically bistable ruthenium polypyridyl complex was immobilised on platinum electrodes via amide condensation with an amine-terminated self-assembled thiol monolayer and underwent rapid electron transfer-induced linkage isomerism.

متن کامل

Rapid electrochemically induced linkage isomerism in a ruthenium(II) polypyridyl complex.

Rapid and complete switching between the N6 and the N5O donor set induced by changing the metal oxidation state has been observed for a new structural motif based on a ruthenium(II) polypyridyl complex.

متن کامل

Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells.

For the first time silica nanoparticles were used to solidify ionic liquids. These ionic liquid-based quasi-solid-state electrolytes were successfully employed for regenerative photoelectrochemical cells that yielded 7% efficiency at AM 1.5 sunlight in combination with an amphiphilic ruthenium polypyridyl photosensitizer.

متن کامل

Cytotoxic (salen)ruthenium(iii) anticancer complexes exhibit different modes of cell death directed by axial ligands.

Two novel series of (salen)ruthenium(iii) complexes bearing guanidine and amidine axial ligands were synthesized, characterized, and evaluated for anticancer activity. In vitro cytotoxicity tests demonstrate that these complexes are cytotoxic against various cancer cell lines and the leading complexes have remarkable cancer-cell selectivity. A detailed study of the guanidine complex 7 and the a...

متن کامل

Ruthenium polypyridyl peptide conjugates: membrane permeable probes for cellular imaging.

Two novel polyarginine labelled ruthenium polypyridyl dyes are reported, one conjugated to five, (Ru-Ahx-R5), and one to eight arginine residues, (Ru-Ahx-R8); both complexes exhibit long-lived, intense, and oxygen-sensitive luminescence; (Ru-R8) is passively, efficiently and very rapidly transported across the cell membrane into the cytoplasm without requirement for its permeablisation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2016